31 research outputs found

    Collocation Method using Compactly Supported Radial Basis Function for Solving Volterra's Population Model

    Full text link
    In this paper, indirect collocation approach based on compactly supported radial basis function is applied for solving Volterras population model. The method reduces the solution of this problem to the solution of a system of algebraic equations. Volterras model is a non-linear integro-differential equation where the integral term represents the effect of toxin. To solve the problem, we use the well-known CSRBF: Wendland3,5. Numerical results and residual norm 2 show good accuracy and rate of convergence.Comment: 8 pages , 1 figure. arXiv admin note: text overlap with arXiv:1008.233

    Numerical investigation of Differential Biological-Models via GA-Kansa Method Inclusive Genetic Strategy

    Full text link
    In this paper, we use Kansa method for solving the system of differential equations in the area of biology. One of the challenges in Kansa method is picking out an optimum value for Shape parameter in Radial Basis Function to achieve the best result of the method because there are not any available analytical approaches for obtaining optimum Shape parameter. For this reason, we design a genetic algorithm to detect a close optimum Shape parameter. The experimental results show that this strategy is efficient in the systems of differential models in biology such as HIV and Influenza. Furthermore, we prove that using Pseudo-Combination formula for crossover in genetic strategy leads to convergence in the nearly best selection of Shape parameter.Comment: 42 figures, 23 page
    corecore